If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4=79
We move all terms to the left:
3x^2-4-(79)=0
We add all the numbers together, and all the variables
3x^2-83=0
a = 3; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·3·(-83)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{249}}{2*3}=\frac{0-2\sqrt{249}}{6} =-\frac{2\sqrt{249}}{6} =-\frac{\sqrt{249}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{249}}{2*3}=\frac{0+2\sqrt{249}}{6} =\frac{2\sqrt{249}}{6} =\frac{\sqrt{249}}{3} $
| 2a-6=-2a | | 5÷x=10÷20 | | 2(x–5)=14 | | 7x/4-x=x/12-2/3 | | -12k+144=3k-45 | | x+14/3=12 | | 1=x+2=12 | | -120=2(-4+8p) | | b=500/(500/(b*2.5)*2.5 | | a+5=9a-11 | | X^2-10x=36 | | 4x+12/15=37/10 | | 3(2x+4)-2(2x+3)=10 | | 7x/4-x=x/12- | | -5=u+4 | | 8(n-4)=14+8n | | 2n-8/3=4 | | 3x-7-7x=-5x= | | 3x-71=2x-36 | | 11/9=n7/9 | | 8(n-4)=18+8n | | -6=4+h | | b=(500/((500/b*2.5)*2.5)) | | 3+4x=2+8x | | x/2+x=1200 | | 2/3(x+3/5)=7/ | | 2x+4-(x-2)=2x+2-2x+6 | | 2x/3-12=69 | | 2x-4-(x+2)=6x | | 4u-11=29 | | 4x+4x+2=12 | | -7x+5(3x-7)=-24-3x |